
Copyright © 2017,2018 by Alan Conroy. All Rights Reserved.

UOS Internals Manual

UOS Internals Manual

2 / 35

Table of contents

Title page .. 4
Preface ... 4
Part I: Overview .. 4

Introduction .. 5
Preliminary Concepts .. 5

Exceptions ... 6
Stores ... 6

Mirror Sets .. 6
RAM Stores ... 7
Partitions .. 7
File Heaps ... 7

Optional File Heap structures ... 8
Store Strings ... 9
Store Lists ... 10
Store String Lists .. 11

The HAL ... 11
Devices ... 13

Terminals .. 14
Memory .. 15

HAL Heap .. 15
The Executive .. 16

The Kernel ... 16
The File Processor (FiP) .. 16
The Heap Manager (HMC) ... 16
The Interrupt Manager (IMC) ... 17
The Memory Manager (MMC) ... 17
The System Services Component (SSC) .. 18
The User and Security Component (USC) .. 18

Privileges .. 19
SysUAF ... 20

Quota Structures .. 22
Access Structures ... 23
Authentication Structures .. 23

Part II: Terminal Services .. 24
Terminal Characteristics .. 24
Output Filters ... 25
XON/XOFF Flow Control .. 26
Fill counts .. 26
Input Filters ... 26
Echo Control .. 27
Delimiters .. 27
Binary Input .. 27
Video Terminals ... 28

Part III: The UOS File System .. 28
Stores ... 28
UOSFS Root Store Layout .. 28
Allocation Clusters .. 30

UOS Internals Manual

3 / 35

Native Files .. 31
String Tables ... 33
Standard Files .. 33

Part IV: System Initialization ... 34
Introduction .. 34
Passing the Configuration to UOS .. 34
Kernel Startup .. 35

UOS Internals Manual

4 / 35

Title page

UOS Internals and Data Structures
November 2018

Created with the Personal Edition of HelpNDoc: Easily create Web Help sites

Preface

Preface
The UOS Internals Manual provides developers and maintenance programmers with a comprehensive
technical overview of UOS. The manual presents the philosophy, functionality and structure of UOS.

The data structures presented herein are shown using Pascal syntax, but they are not inherent to the
Pascal programming language. All structures are "packed", meaning that items are aligned on byte
boundaries. For clarity, the data types used in these structures are defined as follows:

Type Description

byte unsigned 8-bit integer

word unsigned 16-bit integer

longint signed 32-bit 2's complement integer

cardinal unsigned 32-bit integer

int64 signed 64-bit 2's complement integer

pchar pointer to text

pointer generic pointer

string[n] A byte length, followed by an array of characters that is n characters in length. Unused
characters are set to 0.

Note that the size of pointers is platform dependent.

This document is divided into several sections, each dealing with a functionally separate aspect of UOS.

Part I: Overview
Part II: Terminal Services
Part III: The UOS File System
Part IV: System Initialization

Created with the Personal Edition of HelpNDoc: Produce electronic books easily

Part I: Overview

Part I
OVERVIEW OF UOS FUNCTIONALITY

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

5 / 35

This part of the UOS Internals Manual presents an overview of the whole UOS Operating System.

Created with the Personal Edition of HelpNDoc: Free EPub producer

Introduction

Introduction
UOS is a multiuser, general-purpose timesharing system. It can serve as the controller for embedded
controllers, web servers, timesharing, development, and other purposes. Although hardware may provide
lower limitations, UOS can serve up to 65,536 network disks, and up to 1,507,328 directly-connected disks
or other random-access storage devices.

UOS consists of the UOS Executive, the Init secondary bootstrap, standard device drivers, and system
utilities (known as Commonly Used System Programs or CUSPs). Some of the major features of UOS
include the following:

· Interactive timesharing

· Scalability

· Platform agnostic

· User privileges

· Dynamic allocation and sharing of system resources

· Multi-tasking

· File processing and sharing

· Interprocess communication

· Network support

· Multiple File Systems

· Mirrored disks

· Network storage

· Clusters

· Disk caching

· Multi-core

· CDROM/DVDROM support

· Magnetic tape support

· Multiple shells

· Shared common code

· Internationalization support

· Multi-lingual programming support

· RAM Disk support

· Operator services

· Hardware error detection and logging

· System maintenance tools

· System reliability features

Created with the Personal Edition of HelpNDoc: Generate EPub eBooks with ease

Preliminary Concepts

Preliminary Concepts

http://www.helpndoc.com/create-epub-ebooks
http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

6 / 35

This section describes concepts that apply to the following sections.

Created with the Personal Edition of HelpNDoc: Easily create Qt Help files

Exceptions

Exceptions
An exception, in UOS terms, is a report of an error, encapsulated in a class. A pointer to an instance of this
class can be passed to other objects, including other exception instances. Chained exceptions are
exception instances that contain references to other exception instances, which contain references to
others, and so on. The last exception added to the chain is the one that is passed to other code. It
provides an error report from the called code that represents that code's perception of what went wrong. If
further information is needed about why something went wrong, the next exception in the chain can be
examined to provide that information. The calling code does not know ahead of time if the exception being
returned is single or chained. A nil exception is simply an indication of no error.

UOS Exceptions have no inherent relationship to hardware exceptions or exceptions handled by various
languages, such as C++. Each UOS Exception has a facility ID which uniquely identifies the component
that generated the error, and a code which uniquely identifies the type of error from that component.

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Stores

Stores
A store is essentially an array of bytes. UOS uses 64-bit pointers to access any point on the store. These
pointers are integer offsets from the start of the store. So, a 1 Gb disk will have offsets 0 through
1,073,741,823. Thus, a 64-bit address range allows for a store as large as 18 quintillion bytes.

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

Mirror Sets

Mirror Sets
A mirror set is a collection of stores using RAID 1 to provide data redundancy and performance benefits.
Mirror sets are logical stores that are denoted by store controller 25 (Z).

A member store of the mirror set has a structure at the end of the store that indicates information about the
mirror set member:

type TMirror_Header = packed record
 Signature : int64 ;
 Set_Name : array[0..63] of char ;
 Set_GUID : TGUID ;
 Flags : cardinal ;
 Sequence : int64 ;
 Timestamp : int64 ;
 Reserved : array[0..147] of byte ;
 end ;

The following table describes the contents of this structure:

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com
http://www.helpndoc.com/feature-tour/iphone-website-generation

UOS Internals Manual

7 / 35

Item Description

Signature A value indicating a mirror set header:
FF FF 8C 01 00 8C FF FF

Set_Name The name of the mirror set that this is a member of (null terminated)

Set_GUID The GUID associated with this mirror set

Flags 0 = normal, 1 = applies to partition

Sequence Sequence number (see below)

Timestamp Time of last synchronization

Reserved Reserved for future use. Should be zeroes.

When a member of a set is mounted into the mirror set, if it has a later timestamp and sequence, it
becomes the reference store. Otherwise, it is brought into synchronization with the rest of mirror set - a
process called reconciliation. This involves copying the data from the reference store to the new member. If
data is written to the store before reconciliation is finished, the new data is also written to the new store so
that it will not become unreconciled as the set is updated.
While a member is unreconciled, it is never read from since it may contain out-of-date data.

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

RAM Stores

RAM Stores
RAM Disks implement stores in contiguous stretches of memory. Since they are dynamically added and
removed, they (along with other stores, such as network storage) are assigned to their own virtual controller,
which is store controller 24 (Y).

Created with the Personal Edition of HelpNDoc: Easy Qt Help documentation editor

Partitions

Partitions
A store may be subdivided into partitions. UOS supports MBR and GFT partition schemes on any store.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

File Heaps

File Heaps
A file heap is a type of heap that exists in a file. The file is treated as a contiguous, extendable, store, with
a default cluster size of 16 bytes. The lowest offset of the file contains a header structure which defines how
the heap is accessed.

type TFH_Header = packed record
 Prefix : byte ;
 Facility : byte ;
 Version : byte ;
 Reservedb : byte ;
 Resolution : longint ;
 Flags : longint ;
 Reserved : longint ;
 AT_Offset : int64 ;

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.helpndoc.com
http://www.helpndoc.com/feature-tour

UOS Internals Manual

8 / 35

 Origin : int64 ;
 end ;

Item Description

Prefix A value, that with the Facility value, indicates that this is a File Heap: FF

Facility Indicates a file heap: 144 (decimal).

Version File heap format version: 0

Reservedb Reserved for future use. Should be 0.

Resolution Resolution, in bytes, of allocation table (i.e. Cluster size). Default is 16 (decimal).

Flags Reserved for future use. Should be 0.

Reserved Reserved for future use. Should be 0.

AT_Offset Byte offset in the file of the allocation table.

Origin Byte offset in the file of the origin of the data stored in the heap.

Created with the Personal Edition of HelpNDoc: Easy to use tool to create HTML Help files and Help web sites

Optional File Heap structures

Optional File Heap structures
Many file heaps make use of additional structures besides the header. This section describes these
optional structures.

Created with the Personal Edition of HelpNDoc: Easy CHM and documentation editor

http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com

UOS Internals Manual

9 / 35

Store Strings

Store Strings
Store strings are arbitrary-length buffers. Typically they are used to store text. Store strings consist of a
header structure, which points to the actual data:

TStore_String_Header = packed record
 Prefix : TPrefix ; // "STR"
 Version : byte ;
 Length : longword ;
 Flags : longint ; // reserved
 RefCount : longint ; // reserved
 Data : int64 ;
 end ;

Item Description

Prefix A prefix, indicating that this is a store string header: "S", "T", "R"

Version Store string header version. Should be 0.

Length Length of the actual string data, in bytes.

Flags Reserved for future use. Should be 0.

RefCount Reserved for future use. Should be 0.

Data Pointer to the store offset where the string contents are stored.

Created with the Personal Edition of HelpNDoc: Easy EPub and documentation editor

http://www.helpndoc.com

UOS Internals Manual

10 / 35

Store Lists

Store Lists
A store list is a collection of 64-bit integer values. The list is managed via an Allocation Cluster Manager.
The list consists of a header that describes the list and a pointer to the data that is managed by the
Allocation Cluster Manager:

TStore_List_Header = packed record
 Prefix : TPrefix ; // "LIS"
 Version : byte ;
 Delta : longint ;
 Capacity : longint ;
 Max : longint ;
 Data : int64 ;
 end ;

Item Description

Prefix A prefix, indicating that this is a store string header: "L", "I", "S"

Version Store list header version. Should be 0.

Delta The number of 64-bit integers to extend the list by when an extension is required.

Capacity The maximum (physical) size of the list, in items.

Max The maximum logical size of the list, in items. Can never be larger than Capacity.

Data Pointer to the data

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

UOS Internals Manual

11 / 35

Store String Lists

Store String Lists
A store string list is a store list with two differences:

· the prefix is different

· the 64-bit integer values in the list are treated as pointers to store strings.

TStore_List_Header = packed record
 Prefix : TPrefix ;
 Version : byte ;
 Delta : longint ;
 Capacity : longint ;
 Max : longint ;
 Data : int64 ;
 end ;

Item Description

Prefix A prefix, indicating that this is a store string header: "S", "L", "I"

Version Store string list header version. Should be 0.

Delta The number of strings to extend the list by when an extension is required.

Capacity The maximum (physical) size of the list, in strings.

Max The maximum logical size of the list, in strings. Can never be larger than Capacity.

Data Pointer to the data

Created with the Personal Edition of HelpNDoc: Produce online help for Qt applications

The HAL

The HAL
All hardware access is via the HAL (Hardware Abstraction Layer). Any hardware platform that has a HAL
written for it can run UOS.

The HAL standardizes the way that various CPU hardware features are accessed. These features include:

I/O Ports
Memory
Interrupts
Ring (protection) levels
Hardware devices
Numeric coprocessing

The HAL maps the UOS requests into the platform-appropriate code.

The implementation of the HAL is beyond the scope of this manual. The standard interface is as follows:

type THAL = class
 public
 function Allocate_RAM(Size : int64) : pointer ;
 function Boot_Device : TDevice_Info ;
 function Console : TTerminal ;
 procedure Deallocate_RAM(Value : pointer ; Size : int64)

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

UOS Internals Manual

12 / 35

;
 function Device(Index : integer) : TDevice_Info ;
 function Disable(Device_Type, Controller, Device_Unit :
word) : word ;
 function Enable(Device_Type, Controller, Device_Unit :
word) : word ;
 procedure Device_Reset ;
 procedure Halt ;
 function Heap : PHAL_Heap ;
 function Memory(Index : integer) : TMemory_Info ;
 function Radix : longint ;
 function Store(Index : integer) : TCOM_Store64 ;
 procedure Set_Timestamp(Value : int64) ;
 function Timestamp : int64 ;
 function Use_Line_Clock : boolean ;
 function Get_Line_Clock : int64 ;
 procedure Set_Line_Clock(Value : int64) ;
 function Valid_Time : boolean ;
 function Set_Configuration(Address : pointer ; Size :
cardinal) : cardinal ;
 end ;

Method Description

Allocate_RAM Allocates Size bytes of memory and returns a
pointer to the first byte. Returns null if the memory
couldn't be allocated.

Boot_Device Returns information on the boot device. See
TDevice_Info structure.

Console Returns an instance of a TTerminal object used to
access the system console. Returns null if there is
no system console device.

Deallocate_RAM Deallocates Size bytes of memory starting at
Value.

Device Returns information on the device at the passed
Index.

Device_Reset Resets all devices to initial state.

Disable Disables the specified device.

Enable Enables the specified device

Get_Line_Clock Returns current line clock value.

Halt Halts the system.

Heap Returns a pointer to a HAL Heap instance.

Memory Returns memory information for memory segment
Index.

Radix The base used for this hardware. For instance, Intel
hardware would return 16 (hexadecimal).

Set_Configuration Sets the startup configuration to the passed data.

Set_Line_Clock Sets the line clock to Value.

Set_Timestamp Sets the current clock to Value.

Store Returns an instance of a TStore that corresponds to
the device at index Index. Returns null if the index
is invalid or the device is not a store.

Timestamp Returns the current clock value.

Use_Line_Clock Returns true if the system has a line clock.

UOS Internals Manual

13 / 35

Valid_Time Returns true if the clock has a valid value.

Note that this is an abstract interface and all of the methods use stdcall calling standard.

Date/Time
Date and time stamps in UOS use the Sirius Timestamp standard which is the number of 100ns intervals
since 12:00:00 am, Jan 1, year 0 (projecting the current calendar back).

Created with the Personal Edition of HelpNDoc: Full-featured EPub generator

Devices

Devices
UOS hardware devices consist of three items:

1. Type
2. Controller
3. Unit

Type indicates the type of device. Controller is a number between 0 and 25, indicating which hardware
controller, of the type. Unit is the device index on that controller.

The HAL keeps a list of devices, and can be queried for information about these devices by using an index
(index 0 is the first device). The TDevice_Info structure is how this information is communicated back from
the HAL.

The TDevice_Info structure is used to return information about a given device:

type TDevice_Info = packed record
 Device_Type : word ;
 Controller : word ;
 Device_Unit : word ;
 Disabled : boolean ;
 Media_Present : boolean ;
 end ;

The items in this structure are described in this table:

Item Description

Device_Type Type of device. See Device types, below.

Controller Controller index

Device_Unit Unit number of the device

Disabled True if the device is disabled

Media_Present True if media is present in the device.

Device types have the following values:

Value Mnuemonic Description

0 DT_Non_Existant Invalid device index

1 DT_Unknown Type not otherwise included here

2 DT_Serial Serial (stream) device

http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

14 / 35

3 DT_Store Data store

Created with the Personal Edition of HelpNDoc: What is a Help Authoring tool?

Terminals

Terminals
A terminal is a serial non-store device. The TTerminal class descends from the TDevice class.

type TDevice = class
 public
 procedure Cancel_Input ;
 procedure Cancel_Output ;
 function Pending_Input : boolean ;
 function Pending_Output : boolean ;
 procedure Poll ;
 end ;

type TTerminal = class(TDevice)
 public
 procedure Output(S : PChar) ;
 function Input(var C : integer) : boolean ;
 procedure Clear_Typeahead ;
 function Peek : char ;
 function Video : boolean ;
 function Get_OnNewChar : TCharNotify ;
 procedure Set_OnNewChar(Value : TCharNotify) ;
 end ;

The following table describes the TDevice methods:

Method Description

Cancel_Input Cancels pending input or input operation.

Cancel_Output Cancels pending output or output operation.

Pending_Input Returns True if there is any pending input or input operation.

Pending_Output Returns True if there is any pending output or output operation.

Poll Polls the device for operation completion.

The following table describes the TTerminal methods:

Method Description

Output Transmits the passed data. The data ends with a null.

Input Retrieves the next waiting character from the device buffer.

Clear_Typeahead Clears any characters waiting in the device buffer.

Peek Retrieves the next waiting character from the device buffer but doesn't remove it.

Video Returns true if the terminal is capable of video operations. Otherwise it returns
false.

Get_OnNewChar Returns the pointer to the new character delegation.

Set_OnNewChar Sets the new character delegation.

http://www.helpauthoringsoftware.com

UOS Internals Manual

15 / 35

Created with the Personal Edition of HelpNDoc: Free iPhone documentation generator

Memory

Memory
The HAL provides access to the memory-related features of the hardware (such as paging), and also some
minimal memory management, mostly for the purpose of Init and initial UOS startup. Memory may consist
of several segments of varying characteristics. For instance, most systems have some of their physical
memory address range mapped to ROM (such as the BIOS on PCs), whereas other memory is read/write
and available for general use. The HAL considers each contiguous segment of the memory address space
that is of the same general type as a separate area, which is assigned a unique index.

The HAL passes information about memory back to UOS using the following structure:

type TMemory_Info = packed record
 Memory_Type : word ;
 Low : int64 ;
 High : int64
 end ;

This information is only provided on physical memory, and is described below:

Item Description

Memory_Type Type of memory. See Memory types, below.

Low Lowest address of this segment

High Highest address of this segment

Memory types have the following values:

Value Mnuemonic Description

0 MT_Non_Existant Non-existant memory

1 MT_RAM Random access read/write memory

2 MT_ROM Read-only memory

3 MT_WOM Write-only memory

Created with the Personal Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1 single
source

HAL Heap

The HAL Heap
The HAL Heap manager is an object instance that can be used to allocate/deallocate memory for Init and
other non-UOS programs. The UOS executive has its own memory management component that it uses for
the Executive heap. It is very basic and doesn't support anything more than allocating/deallocating areas of
physical memory.

type THAL_Heap = object
 public

http://www.helpndoc.com/feature-tour/iphone-website-generation
http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com/help-authoring-tool

UOS Internals Manual

16 / 35

 function Getmem(Size : Integer) : Pointer ;
 function Free(P : Pointer) : Integer ;
 function Realloc(P : Pointer ; Size : Integer) : Pointer ;
 end ;

This is an abstract class. All methods use the stdcall calling convention. Note that the class doesn't
support allocations of more than 2 Gb.

Item Description

Getmem Allocate Size bytes of memory and return a pointer to the first byte, Returns null if there
wasn't enough contiguous memory available.

Free Frees the memory allocated at address P.

Realloc Reallocates the memory allocated at address P, to be Size bytes long. The function
attempts to reallocate in place, but if it cannot, it allocates a new buffer and copies the
data. The function returns the address of the resized buffer (whether or not it changed).

Created with the Personal Edition of HelpNDoc: iPhone web sites made easy

The Executive

The Executive
The UOS executive is the core part of UOS. It is made up of several components that work together. The
executive interfaces directly with the HAL.

Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

The Kernel

The Kernel
The Kernel is the executive component responsible for marshaling the rest of the executive components. It
is the coordinator of communications between the various components and the HAL.

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

The File Processor (FiP)

The File Processor (FiP)
The FiP is the executive component responsible for managing devices and files. All device, file, and file
system access go through this component.

Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

The Heap Manager (HMC)

The Heap Manager (HMC)
The HMC executive component provides a memory heap manager for the other executive components.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

http://www.helpndoc.com/feature-tour/iphone-website-generation
http://www.helpndoc.com/create-epub-ebooks
http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com/create-epub-ebooks
http://www.helpndoc.com/feature-tour

UOS Internals Manual

17 / 35

The Interrupt Manager (IMC)

The Interrupt Manager (IMC)
The IMC executive component is responsible for managing the handling of interrupts.

Created with the Personal Edition of HelpNDoc: Easy EBook and documentation generator

The Memory Manager (MMC)

The Memory Manager (MMC)
The MMC interfaces directly with the HAL to manage the computer's memory. The HAL provides a
somewhat abstracted interface to the memory management hardware. The MMC provides a view of the HAL
memory interface that is compatible with the way that UOS uses memory. There are many memory
management schemes. Being platform-agnostic, UOS has to be able to handle any of them.

The purpose of the MMC is to manage memory by responding to requests to allocate RAM for a process.

MMC manages a master page table and a process page list. Since the executive does operations on behalf
of the whole system, it operates as if it were its own process, separate from all other processes running on
the system. A PID of 0 is used for executive-specific operations.

The Page_Table is a list of 32-bit integers, one per page (the HAL defines the size of a memory page). The
low 16 bits of each value indicate the process ID that currently owns the page. The upper 16 bits are flags:

Mnuemonic Value (Hex) Meaning

Page_Flag_Locked 1000 Page is locked

Page_Flag_No_RAM 2000 Non-existent memory (unmapped in a paging
scheme)

Page_Flag_Read_Only 4000 Physical read-only

Page_Flag_Write_Only 8000 Physical write-only

Page_Flag_Allow_Read 10000 Allow read access

Page_Flag_Allow_Write 20000 Allow write access

Page_Flag_Allow_Execut
e

40000 Allow execution

The MMC supports allocation types, which indicates the type of memory. The memory types are defined by
the HAL. Each process has a page list that is a list of allocations per allocation type. On a typical modern
CPU architecture, the allocation types are: Stack, Data, and Instruction (S, D, and I), and a page list would
look like this:

http://www.helpndoc.com

UOS Internals Manual

18 / 35

Each set of allocations has one or more segments associated with it. If hardware requires contiguous
segments, there will only ever be a single segment for each allocation type. Each segment is a represented
with the following structure:

type TSegment = class
 public // API...
 Physical : int64 ;
 Length : int64 ;
 Flags : integer ;
 Typ : char ;
 Index : integer ;
 end ;

Name Type Description

Physical int64 Starting physical address

Length int64 Segment length, in bytes

Flags integer Page flags

Type char Allocation type

Index integer Type index

Created with the Personal Edition of HelpNDoc: Easy EBook and documentation generator

The System Services Component (SSC)

The System Services Component (SSC)
The SSC executive component provides various services for the other executive components. These
services are provided as functions or classes.

Created with the Personal Edition of HelpNDoc: Produce online help for Qt applications

The User and Security Component (USC)

The User and Security Component (USC)
The USC executive component manages users, processes, and security for UOS.

A user account is a uniquely-named set of attributes that define who is allowed to access the system and
what they can do when logged in. Although each user has a name that is unique to the system, UOS uses

http://www.helpndoc.com
http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

UOS Internals Manual

19 / 35

an associated User ID Code (UIC) to identify the user. Unless otherwise specified, the term "user" herein
will refer to a UIC and the associated attributes.

UICs are 4-byte unsigned integer values. UIC value 0 is used for the template user settings. That is, UIC 0
is not a user than can log in or be associated with ownership (a reference to UIC 0 in most places is an
indication of an unknown, invalid, or unassigned, owner). However, within SysUAF, UIC 0 can be optionally
defined. When it is defined, it serves as a template for all newly created user accounts. UIC 1 is always
reserved for the Startup account. No user can ever log into the Startup account - its sole use is in starting
up the system after the executive startup completes. In fact, that is the only way the Startup user is ever
logged-in, via a call directly from the Kernel which forces the login. UIC 1 (and everything about it) is hard-
coded. That way, a corrupted or missing SysUAF will never prevent system startup and/or recovery.
UICs 2 through 7 are reserved as special "system" accounts. Normally, when a new user is created in
SysUAF, it is assigned an unused UIC greater than 7. Although a user with sufficient privileges can create a
new user as a "system" account (UIC<8). System accounts are treated in special ways. For instance, a
system user account can always log in, even if logins are disabled.

Created with the Personal Edition of HelpNDoc: Free EPub producer

Privileges

Privileges
Users are granted access to these features via privileges. Privileges are flags that indicate whether or not a
user has a given ability to affect UOS. Most users have no privileges for security purposes - that way if the
user runs a virus, it cannot harm the rest of the system. There are four privileges that affect the operation of
protections:

· BYPASS - User has RWED access to all files, bypassing file protections

· READALL - User has read access to all files, bypassing file protections

· SYSPRV - User accesses all files via the file's system protection

· GRPPRV - User accesses all files via the file's group protection

The remaining privileges are:

· ACNT - Run processes with accounting disabled.

· ALLSPOOL - Allows user to allocate spooled devices.

· ALTPRI - Alter priorities.

· AUDIT - Allow audit records to be written.

· BUGCHK - Allow messages to error logger.

· CMEXEC - Allow calls to Change Mode to Supervisor system service.

· CMKRNL - Allow call to Change Mode to Kernel/Executive system service.

· DIAGNOSE - Allow user to run diagnostics and intercept error log messages.

· EXQUOTA - Allows user to exceed usage quotas.

· GROUP - Allows user to affect other processes belonging to common group.

· GRPNAM - Allows user to use /GROUP on mount and dismount operations.

· IMPERSONATE - Allows detached processes to be created with a different UIC.

· LOG_IO - Allow certain device control functions.

· MOUNT - Allows user to mount volumes.

· NETMBX - Allow network control operations.

· OPER - Allows use of OPCOM.

· PFNMAP - Allows unrestricted access to physical memory.

· PHY_IO - Allows physical I/O operations.

· PRMCEB - Allows creation/deletion of permanent common event flag clusters.

http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

20 / 35

· PRMGBL - Allows creation/deletion of permanent global sections.

· PRMMBX - Allows creation/deletion of permanent mailboxes.

· PSWAPM - Allows control of swapping operations.

· SECURITY - Allow user to perform security-related functions.

· SETPRV - Allows user to create processes that have privileges greater than the user.

· SHARE - Allows user to open assigned devices or to assign nonshared devices.

· SHMEM - Allows user to create global sections and mailboxes in memory shared by multiple
processors.

· SYSGBL - Allows user to create/delete system global sections.

· SYSLCK - Allows user to process locks.

· SYSNAM - Allows user to bypass access controls on system symbol tables.

· TMPMBX - Allows user to create temporary mailbox.

· VOLPRO - Allows user to override protections on volumes.

· WORLD - Allows user to control any/all other processes.

A user cannot grant privileges to any object that are greater than the privileges he has. For instance, a
program can create sub-processes. These new processes can be granted any privileges that the user
running the program has, but they cannot be granted privileges that the creator process doesn't have. The
one exception to the rule is that the SETPRV privileges allows a process to grant additional privileges to
itself or another process. It is possible, however, for a user to grant privileges to a exectuable such that any
user that runs the executable will have those privileges while the program is running, even if the user running
the program doesn't have those privileges. Certain CUSPs have such privileges in order to perform functions
on behalf of a user without otherwise sufficient privileges.

A running process has four sets of privilege:

· Granted privileges: These are the privileges granted to the user account.

· Current privileges: This is a subset of the granted privileges that indicate which privileges are currently in
effect.

· Program privileges: These are the privileges granted to the currently running program. If a program is not
running, these flags are all cleared.

· Effective privileges: this is the same as Current privileges merged with any program privileges.

Whenever the user makes a request to UOS, the Effective privileges are checked against - regardless of the
Granted privileges.

Created with the Personal Edition of HelpNDoc: Free CHM Help documentation generator

SysUAF

SysUAF
The System User Authorization File stores the user account information, including passwords. The file is
named \uos\SysUAF.DAT on the boot device. SysUAF.DAT is a file heap store. This section describes the
data structures stored within this file.

type Ptr = int64 ;
 TList_Ptr = Ptr ;
 TString_Ptr = Ptr ;
 TStringList_Ptr = Ptr ;
 TTimeStamp = Ptr ;

 TUAF_User = packed record
 Name : TString_Ptr ;

http://www.helpndoc.com

UOS Internals Manual

21 / 35

 Flags : longint ;
 Authentication : TList_Ptr ;
 Access : TList_Ptr ;
 Shell : TString_Ptr ;
 LGICMD : TString_Ptr ;
 Home : TString_Ptr ;
 Privileges : int64 ;
 Auth_Privileges : int64 ;
 Expiration : TTimeStamp ;
 Owner : longint ;
 Priority : longint ;
 Quotas : TUAF_Quotas ;
 Last_Interactive_Login : TTimeStamp ;
 Last_Non_Interactive_Login : TTimeStamp ;
 Last_Login_Failure : TTimeStamp ;
 Login_Failures : longint ;
 end ;

Item Description

Name User's name.

Flags User account flags. Valid flags are:
UAF_Audit = If set, security auditing is enabled for the user.
UAF_AutoLogin = If set, the user is restricted to the automatic login mechanism.
UAF_Captive = If set, the user is prevented from changing any defaults at login, and
cannot leave the LGICMD command procedure specified for the user. Further, Ctrl/Y
interrupts are initially disabled.
UAF_DefShell = If set, the user is restricted to UCL, the default UOS shell.
UAF_DisCtlY = If set, Ctrl/Y interrupts are initially turned off.
UAF_DisImage = If set, the user is prevented from executing the RUN command and
any foreign commands.
UAF_Disreconnect = If set, the user is disabled from automatic reconnection when
an interactive session is interrupted.
UAF_DisReport = If set, the login CUSP will not display the last login time, login
failures, and other security reports.
UAF_Disabled = If set, the account is disabled and logins are not allowed.
UAF_DisWelcome = If set, the system welcome message is not displayed by the
login CUSP.
UAF_DisAuth = If set, the user is not required to provide authentication.
UAF_Restricted = If set, the user is prevented from changing any defaults at login.
Ctrl/Y is also initially disabled. Typically this is used to restrict a user to a specific
application.
UAF_Accounting = If set, user accounting information is written to accounting.dat file.

Authentication Authentication schemes - list of pointers to TUAF_Authentication records

Access Access list (see TUAF_Access record)

Shell Default shell

LGICMD Login command file name

Home Default home folder

Privileges Starting (default) privileges

Auth_Privileges Authorized (allowed) privileges

Expiration Account expiration

Owner User to charge accounting to (0=this user)

Priority Default priority

Quotas A quota structure (see below)

Last_Interactive_Lo
gin

Timestamp of last interactive login.

UOS Internals Manual

22 / 35

Last_Non_Interactiv
e_Login

Timestamp of last non-interactive login

Last_Login_Failure Timestamp of last failed login attempt.

Login_Failures Number of login failures since last successful login

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

Quota Structures

Quota Structures
This structure is used to store quota information for a user. It is embedded in the User header structure.

type TUAF_Quotas = packed record
 ASTLM : cardinal ;
 BIOLM : cardinal ;
 BYTLM : cardinal ;
 CPUTIM : cardinal ;
 DIOLM : cardinal ;
 ENQLM : cardinal ;
 FILLM : cardinal ;
 MAXACCTJOBS : cardinal ;
 MAXJOBS : cardinal ;
 PGFLQUOTA : cardinal ;
 TQELM : cardinal ;
 WSDEFAULT : cardinal ;
 WSEXTENT : cardinal ;
 PRCLM : cardinal ;
 THREADLM : cardinal ;
 ETIME : cardinal ;
 end ;

Item Description

ASTLM Maximum number of simultaneous asynchronus I/O operations. When the quota is
reached, asynchronous I/O requests are treated as synchronous I/Os.

BIOLM Maximum number of I/Os that are buffered in system memory. I/Os can be written directly
to user memory buffers, or to system I/O buffers and then copied to user buffers.

BYTLM Maximum number of I/O bytes per session.

CPUTIM Maximum CPU time per session.

DIOLM Maximum number of simultaneous direct I/O requests. These are I/O requests that have
user memory buffers waiting for the I/O completion. Reaching this limit will block the
program until one or more direct I/Os complete.

ENQLM Maximum number of locks that a process can simultaneously hold.

FILLM Maximum simultaneous open files.

MAXACCTJOB
S

Maximum number of non-network processes that can be active simultaneously.

MAXJOBS Maximum total number of processes (interactive, batch, detached, and network) that can
be active simultaneously. The first four network jobs are not counted.

PGFLQUOTA Maximum number of pages in the page file that the process is allowed to use.

TQELM Maximum simultaneous timed queue events (timers) that a process can have active.

WSDEFAULT The number of memory pages that a process can use. Under some circumstances,
WSEXTENT is used to limit process memory.

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

UOS Internals Manual

23 / 35

WSEXTENT Maximum number of memory pages that a process can use.

PRCLM Maximum number of simultaneous processes that a user can have running.

THREADLM Maximum simultaneous threads per process.

ETIME Amount of elapsed (connect) time per session.

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

Access Structures

Access Structures
Access structures in the access list each map onto 64-bit integers.

TUAF_Access = packed record
 Typ : word ;
 DOW : word ;
 Starting : word ;
 Ending : word ;
 end ;

Item Description

Typ Access type. One of the following values:
UAT_Batch = Batch logins.
UAT_Interactive = logins via physical connections (such as the monitor/keyboard on a PC) or
via network (such as telnet).
UAT_Network = Implicit logins that are used to authenticate the user when trying to access
system resources via network connection.
UAT_Remote = Logins through another UOS system serving as a gateway.

DOW Day of the week. 0 = Sunday, 6 = Saturday.

Starting Starting time of day: minutes after midnight.

Ending Ending time of day: minutes after midnight.

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Authentication Structures

Authentication Structures
Authentication structures are used to indicate what methods of authentication are used during logins.

TUAF_Authentication = packed record
 Typ : longint ;
 Expiration : int64 ;
 Access_Type : longint ;
 Auth : TString_Ptr ;
 Flags : longint ;
 Description : TString_Ptr ;

 Lifetime : int64 ;
 Last_Change : int64 ;
 end ;

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.helpndoc.com

UOS Internals Manual

24 / 35

Item Description

Typ Authentication method:
UAM_Password = Password
UAM_Auth = External authentication

Expiration If 0, the password doesn't expire. Otherwise, this is the timestamp of when the password
expires.

Access_T
ype

Access type that this method applies to:
UAT_Batch = Batch logins.
UAT_Interactive = logins via physical connections (such as the monitor/keyboard on a PC) or
via network (such as telnet).
UAT_Network = Implicit logins that are used to authenticate the user when trying to access
system resources via network connection.
UAT_Remote = Logins through another UOS system serving as a gateway.

Auth If this is a password authentication method, this is the password value. Note: this is a hashed
value rather than the actual password text. If this is an external authentication method, then
this is the name of the CUSP that is called to do the authentication. If Description is non-null,
the user is prompted for a response before the CUSP is called. If Description is null, prompting
is left up to the CUSP.

Flags Flags. A combination of the following:
UAMF_Generate = Automatically generate passwords

Descriptio
n

If null, a default value is displayed to the user for authentication. For instance, for a password
authentication method, the user would be prompted by the word "Password". Otherwise, this is
the text that the user is prompted with.

Lifetime This is ignored for non-password records. If 0, the password doesn't autoexpire. Otherwise, this
is the length of time (in ns) until a new password expires. When a password is changed, the
Expiration date is set to the current date/time plus this value.

Last_Cha
nge

Ignored except for password authentication records. Otherwise, this is the timestamp of the
last password change.

Created with the Personal Edition of HelpNDoc: Easily create EPub books

Part II: Terminal Services

Part II
TERMINAL SERVICES

This part of the UOS Internals Manual describes the interface for terminal devices, associated structures,
and classes. The hardware portion of the terminal interface and the HAL driver for that is not covered here.
Terminal is a general term which indicates the means of interaction between the user and UOS.

Created with the Personal Edition of HelpNDoc: Easily create Web Help sites

Terminal Characteristics

Terminal Characteristics
Terminal devices have certain hardware characteristics that are strictly a function of that terminal. The
hardware interface through which the terminal connects also has certain characteristics that are strictly
under the control of the hardware. Much of this functionality happens outside of the knowledge and control
of UOS. However, certain features of different terminals are supported by UOS so that many different forms
of terminals and hardware interfaces are supported.

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/feature-tour

UOS Internals Manual

25 / 35

The following flags are used to inform UOS as to the terminal characteristics.

Val
ue

Mnuemonic Meaning

1 TF_Video set to indicate that the terminal is a video terminal as opposed to a hardcopy (printer)
terminal.

4 TF_Uppercas
e_Only

set to indicate that the terminal can only process uppercase characters. Otherwise,
the terminal can process both uppercase and lowercase characters.

These flags have ramifications for how the input and output filters handle characters.

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

Output Filters

Output Filters
Output to terminals is cooked by an output filter which handles certain special conditions. Output filters
have a flag which indicates the options related to outputting characters to the terminal.

Valu
e

Mnuemonic Description

1 TOFF_Null Indicates that output is to be ignored when it is sent to the output filter. The user
can toggle output on/off by means of the Control-O character. When the output is
turned off, the TOFF_Null flag is set and any output sent to the filter is ignored and
not sent to the terminal.

2 TOFF_Paused Indicates that flow-control has paused output until the terminal or user is ready to
view more output. When paused, the output filter buffers characters sent to it.
Output can be paused/resumed by the terminal sending XON and OXFF when its
buffer fills and empties. Most terminals also allow the user to use control
characters to send XON/XOFF characters to manually pause or resume output.
When an XOFF character is received by the terminal, the TOFF_Paused flag is set.
 When XON is received, the flag is cleared.

4 TOFF_Noformfe
ed

Indicates that the terminal doesn't process the form feed control character and
would like the output filter to simulate it with line feeds.

8 TOFF_Notab Indicates that the terminal doesn't process tabs characters. In this case, the filter
simulates tab stops with spaces. By default, tab stops are considered to be every
8 columns.

16 TOFF_NoWrap Indicates that the output filter will not output a CR/LF combination when the printing
position reaches the terminal width. Normally, the output filter will do this to
automatically wrap output.

32 TOFF_Novertica
ltab

Indicates that the terminal doesn't process vertical tabs and wants the output filter
to simulate it with line feeds.

The output filter is responsible for keeping track of the current position (column and line) on the terminal. By
default, most control characters not mentioned above will be converted into a form of a circumflex followed
by a letter. For instance, Control-B would be converted to "^B" on output.

For terminals that only support uppercase characters, the filter converts lowercase characters to uppercase.

Created with the Personal Edition of HelpNDoc: Easily create HTML Help documents

http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com/feature-tour

UOS Internals Manual

26 / 35

XON/XOFF Flow Control

XON/XOFF Flow Control
Most terminals can use the XOFF/XON (transmit off/transmit on) protocol. This allows both the terminal and
the computer to exercise some control over the data they receive by telling the other side when to start and
stop transmitting characters. This is accomplished by sending XOFF (ASCII value 19) to stop the
transmission and XON (ASCII value 17) to start it.

Most terminals have input buffers used to store received characters when they are received faster than the
terminal can display/print. Likewise, some computer hardware used to receive terminal input also has a
buffer to store received characters until the computer software has a chance to process them. XON/XOFF is
used to prevent these buffers from filling and losing characters. Because hardware buffers tend to be
relatively small, UOS also maintains buffers for both input and output to terminals. Thus, UOS will also send
XON/XOFF to the terminal as its buffers fill and empty.

XON corresponds to the Control-Q and XOFF corresponds to Control-S. Because it is impossible for the
computer to determine if an XON or XOFF was sent by the terminal hardware or by the user typing Control-
Q/S, the user can use these key combinations to manually turn terminal reception of characters on and off.

If the terminal doesn't respond to XON/OFF, any characters received after the UOS input buffer is filled are
ignored (lost). UOS has input flags that can allow UOS to ignore XON/XOFF in terms of flow-control and
treat them as normal character input. Even if the terminal is in binary mode, XON/XOFF is treated as flow-
control, unless the ignore-XON/OFF flag is set.

Note that XON/XOFF flow control is one-way, so that transmission can be paused in one direction but not in
the other. Only if both ends (computer and terminal) send XOFF is transmission paused in both directions.

Created with the Personal Edition of HelpNDoc: Easily create EPub books

Fill counts

Fill counts
Some older terminal hardware requires time to complete a physical action initiated by a control character.
For instance, after receiving a carriage return (CR) character, the DEC LA30 terminal needed time before the
print head returned to the beginning of the next line. If characters were received before this, they would
display at whatever point the print head was as it returned. Such old terminals are very rare, but UOS
provides backwards compatibility for them.

Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

Input Filters

Input Filters
Input from terminals is cooked by an input filter which handles certain special conditions. Input filters have a
flag which indicates the options related to inputting characters to the terminal.

Valu
e

Mnuemonic Description

1 TIFF_Binary Don't cook input

2 TIFF_Noecho Don't echo characters

4 TIFF_NoContr
ol

Echo control codes exactly

8 TIFF_Notypea Don't buffer unsolicited input (no input is buffered while this is set)

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

27 / 35

head

16 TIFF_NoTerm
XON

UOS treats XON/XOFF sent by terminal as data rather than start/stop output

32 TIFF_NoLineE
dit

Don't support line editing.

64 TIFF_BSasDE
L

Treat backspace as Delete

128 TIFF_NoContr
olT

Don't provide status for Control-T

256 TIFF_NoContr
olC

Don't interrupt for Control-C

512 TIFF_NoContr
olY

Don't interrupt for Control-Y

The input filter is responsible for keeping track of the current position (column and line) on the terminal.

Created with the Personal Edition of HelpNDoc: Easily create EBooks

Echo Control

Echo Control
Under normal circumstances, UOS echoes characters as they are typed - but only when the running
program is requesting input. Characters typed when input isn't being requested are stored in the input buffer
(also known as the "type-ahead" buffer). They are echoed when the input buffer is processed if the terminal
hasn't been set to binary input mode. There are two reasons for not echoing characters unless a program
has requested input: 1) echoing characters at other times may interfere with formatted output, and 2) the
input may be a password which the program will not want echoed for security reasons. Certain control
codes are processed immediately upon receipt, rather than storing them in the type-ahead buffer for later
processing. Such characters are either echoed or otherwise processed immediately.

The echo ability can be turned off by setting the flag that prevents echo or by setting the terminal to binary
mode. Turning echo off can be used to protect a password while it is being typed (or processed). Some
terminals have a "local-echo" feature that automatically displays the typed characters as they are typed and
sent to the computer. In such a case, if the computer also echoes the character, the characters can be
doubled on the terminal. In such cases, the echo can be turned off to prevent the doubled characters.

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Delimiters

Delimiters
A delimiter is a character used to indicate the end of a line of input. Delimiters are treated as normal
characters if the terminal is in binary input mode. Standard delimiters include carriage return (CR - control-
M - ASCII value 13), line feed (LF - control-J - ASCII value 10), control-Z (ASCII value 26), and Escape (ASCII
Value 30).

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

Binary Input

Binary Input
When a terminal is in binary input mode, the input data is passed directly to the program without alteration
or processing, except for XON/XOFF flow control (unless the XON/XOFF processing is disabled). Standard

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/feature-tour

UOS Internals Manual

28 / 35

delimiters and other special characters are neither required nor recognized. This includes Control-C,
Control-Y, and Control-T.

Created with the Personal Edition of HelpNDoc: Easily create HTML Help documents

Video Terminals

Video Terminals

Video terminals are treated differently than hard-copy terminals when it comes to line-editing processing.
Characters on video terminals can be edited in-place. For instance, a delete operation will output a
backspace, a space, and another backspace in order to erase the character. On hard-copy terminals, by
comparison, a delete operation will display deleted characters between backslashes.

Created with the Personal Edition of HelpNDoc: Produce electronic books easily

Part III: The UOS File System

Part III
THE UOS FILE SYSTEM

This part of the UOS Internals Manual presents an overview of the UOS File System. UOS can support
multiple file structures. Most of these are documented elsewhere and are beyond the scope of this manual.
 The native file system for UOS is called the UOS File System (or UOSFS).

Created with the Personal Edition of HelpNDoc: Free EPub and documentation generator

Stores

Stores
The UOSFS is a complex data structure which exists on a store.

Disks are one of the type of stores that UOS uses. Disks can read and write entire sectors, the minimum
writable number of bytes is called the cluster size.

Managed Stores
The File System will need to allocate chunks of the available storage space as required. Also, as things are
deleted, it will need to deallocate those chunks so they can be reused for other purposes. The management
of free and allocated space is the domain of the store itself - not the file system. A managed store keeps
track of free and allocated space, which is typically done through an allocation table (a data structure that
allows the store to manage the space). The UOS File System can deal with any cluster size of 256, or
more, bytes.

The allocation table is a bit array, where each bit represents a cluster on the store. If the bit is set, the
corresponding cluster is in use; if it is not set, the cluster is available.

Created with the Personal Edition of HelpNDoc: Free EPub producer

UOSFS Root Store Layout

UOSFS Root Store Layout

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/create-epub-ebooks
http://www.helpndoc.com
http://www.helpndoc.com/create-epub-ebooks

UOS Internals Manual

29 / 35

A store that has been initialized to hold a UOS File System has a structure that allows UOS to locate
information about the store, the file system, and where to find the location of the root of all files stored in the
file system.

type FS_Boot_Record = packed record
 Bootstrap1 : array[0..15] of byte ;
 Header : int64 ;
 end ;

 FS_Header = packed record
 ID : smallint ;
 ID1 : byte ;
 Version : byte ;
 AT_Offset : int64 ;
 AT_Size : int64 ;
 Flags : int64 ;
 Clustersize : cardinal ;
 Folder_Clustersize : cardinal ;
 Root : int64 ;
 Volume_Label : string[127] ;
 Password : string[31] ;

 OS_Position : int64 ;
 OS_Length : cardinal ;
 MMC_Position : int64 ;
 MMC_Length : cardinal ;
 HMC_Position : int64 ;
 HMC_Length : cardinal ;

 end ;

The first cluster on a store contains the boot block, which is the bootstrap program for the store. The first
16 bytes are reserved for the bootstrap, followed by an 8-byte pointer to the file system header, and then
followed by the rest of the bootstrap code.

The File System header contains the size and location of the store's allocation table, information on the
cluster sizes, flags, the location of the root folder, and other information.

Item name Description

ID 255

ID1 135

Version 10 (indicates version 1.0)

AT_Offset Offset of allocation table

AT_Size Size of allocation table, in bytes

Flags UOSFSF_Dirty: 0=clean, 1=dirty
UOSFSF_Private: 0=private, 2=public

Clustersize File system cluster size

Folder_Clustersize Cluster size for folders

Root Location of file system root

Volume_Label Label for store

Password Password for store

OS_Position Offset of Kernel image on store

OS_Length Length of Kernel image

MMC_Position Offset of Memory Management component on store

MMC_Length Length of Memory Management component

HMC_Position Offset of Heap Management component on store

UOS Internals Manual

30 / 35

HMC_Length Length of Heap Management component

Created with the Personal Edition of HelpNDoc: Free iPhone documentation generator

Allocation Clusters

Allocation Clusters
Files in the UOSFS are stored in extents that can exist anywhere on the store. This allows an efficient use
of the store's total capacity at the expense of some overhead. Each file, unless it has zero length, has an
allocation cluster chain which is simply an array of 64-bit pointers. Each non-zero pointer indicates the
location of an extent for the file on the store. An entire cluster is used to store a set of extent pointers,
which means the number of pointers kept in a cluster is the cluster size divided by 8. However, the last
pointer in the cluster is not a pointer to a file extent, but a pointer to the next cluster in the allocation cluster
chain. In this way, a file can be of any size. The process of moving from one cluster to another while
reading the allocation chain is called a "turn".

Here is a diagram of an allocation cluster chain on a store with a cluster size of 512:

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

http://www.helpndoc.com/feature-tour/iphone-website-generation
http://www.helpndoc.com/feature-tour/iphone-website-generation

UOS Internals Manual

31 / 35

Native Files

Native Files
Files on the UOSFS are tracked via a file header, which contains a pointer to an allocation cluster chain.
The header holds five extent pointers so that small files don't use extra space for allocation clusters.
Further, the number of allocation clusters required can be reduced by increasing the file's cluster size to
some multiple of the store's cluster size.

The native file header is a structure matching the following definition:

type TData_Stream = packed record
 Name : int64 ;
 Pointer : int64 ;
 end ;

 TUOS_File_Header = packed record
 Name : longint ;
 Size : int64 ;
 EOF : int64 ;
 Uncompressed_Size : int64 ;
 Clustersize : cardinal ;
 Record_Size : cardinal ;

 // Dates...
 Creation : int64 ;
 Last_Modified : int64 ;
 Last_Backup : int64 ;
 Last_Access : int64 ;
 Expiration : int64 ;

 Creator : cardinal ;
 Owner : cardinal ;
 ACL : int64 ;

 Flags : int64 ;
 Version_Limit : longint ;
 Extension : int64 ;

 Streams : array[0..4] of TData_Stream ;
 Data_Stream : int64 ;
 Clusters : array[0..4] of int64 ;

 Parent : int64 ;
 File_System : int64 ;
 end ;

The contents of the file header are described in the following table:

Header item Description

Name File name index

Size File size on disk

EOF Logical end of file offset

Uncompressed_Size The size of the file when uncompressed

Record_Size Size for record in record-oriented files

Creation Creation date

UOS Internals Manual

32 / 35

Last_Modified Date last modified

Last_Backup Date last backed up

Last_Access Date last accessed (read or write)

Expiration Date of file expiration

Creator ID of the user who created the file

Owner ID of the user who owns the file

ACL Pointer to Access Control List

Flags A set of bit flags.
General:
FAF_DSM_MASK = Mask for data security mode
FAF_PLACED = Placed at a specific location
FAF_CONTIGUOUS = Contiguous file data
FAF_DELETED = Deleted file
FAF_READONLY = Read-only data
FAF_LINK = Link to another file
FAF_SYSTEM = System file
FAF_HIDDEN = Hidden file
FAF_DIRECTORY = Directory file
FAF_PERMANENT = Non-deletable file
FAF_COPYING = In the process of copying
Protections:
FAF_PROTECTION_OWNER_READ - Owner can
read
FAF_PROTECTION_OWNER_WRITE - Owner can
write
FAF_PROTECTION_OWNER_DELETE - Owner can
delete
FAF_PROTECTION_OWNER_EXECUTE - Owner
can execute
FAF_PROTECTION_GROUP_READ - Group
members can read
FAF_PROTECTION_GROUP_WRITE - Group
members can write
FAF_PROTECTION_GROUP_DELETE - Group
members can delete
FAF_PROTECTION_GROUP_EXECUTE - Group
members can execute
FAF_PROTECTION_SYSTEM_READ - System
accounts can read
FAF_PROTECTION_SYSTEM_WRITE - System
accounts can write
FAF_PROTECTION_SYSTEM_DELETE - System
accounts can delete
FAF_PROTECTION_SYSTEM_EXECUTE - System
accounts can execute.
FAF_PROTECTION_WORLD_READ - Everyone can
read
FAF_PROTECTION_WORLD_WRITE - Everyone
can write
FAF_PROTECTION_WORLD_DELETE - Everyone
can delete
FAF_PROTECTION_WORLD_EXECUTE - Everyone
can execute

Version_Limit Maximum version limit (0=no limit)

Extension Pointer to header extension (reserved)

Streams Meta-data stream pointers and names

UOS Internals Manual

33 / 35

Data_Stream Data stream pointer

Clusters Pointers to first 5 extents

Parent Parent directory pointer

File_System Parent directory offset

Data Streams
Files contain data. UOS file can contain meta-data in addition to data. Some meta data is in the file
header, but UOSFS allows additional information to be stored in the file, but kept separate from the file's
actual data. This is accomplished via "streams". A file can have any number of data streams. Data stream
0 is unnamed and reserved for the file's actual data. All other data streams can be assigned names that
indicate what data is being stored in each stream.

Contiguous Files
Contiguous files (FAF_CONTIGUOUS flag) are stored in contiguous clusters. Therefore, allocation chains
are not required. Instead, the first extent in Clusters points to the first cluster of the contiguous data.

Created with the Personal Edition of HelpNDoc: Produce Kindle eBooks easily

String Tables

String Tables
File names and data stream names are stored in the file header as integer values, which are indexes into
the store string table. This table is a group of three files in the \Store folder which contain all the names
used on the store. The files are

1. An allocation table that tracks what space is used and available in the string data file. Each bit in the
table maps 8 bytes in the string data file.

2. A string data file which contains the actual name text. This file can be up to 4 Gb in length.
3. An index table which contains pointers into the string data file, organized in a way that provides a sorted

(ascending) list of the names

The string data file contains string records. Each record has the following format:

Byte Offset Description

0-3 Reference count. Files with the same name share the same string table offset. This
indicates how many references exist to this value on the store.

4 String length (up to 256 bytes). 0 represents a length of 256.

5-n String contents.

Created with the Personal Edition of HelpNDoc: Create iPhone web-based documentation

Standard Files

Standard Files
The standard files and folders on a UOS File System are as follows (leftmost entries are top-level folders in
the root folder):

Store - Store-related files exist in this folder
AT.sys - string allocation table
BadBlocks.sys - contains all bad clusters on the store
Index.sys - string indexes

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.helpndoc.com/feature-tour/iphone-website-generation

UOS Internals Manual

34 / 35

Strings.sys - string table data
System - System-wide files, such as installed products exist in this folder
UOS - Operating System files are kept in this folder

installed.sys - link to hooked UOS installation
default.sys - link to the default UOS installation
startup.dat - configuration information passed from Init to UOS
sysuaf.dat - system user authorization file (user accounts).
accounting.dat - user accounting file
all other folders are the UOS installations

Users - User home directories exist in this folder

Created with the Personal Edition of HelpNDoc: News and information about help authoring tools and
software

Part IV: System Initialization

Part IV
SYSTEM INITIALIZATION

This part of the UOS Internals Manual describes the UOS initialization.

Created with the Personal Edition of HelpNDoc: Free Web Help generator

Introduction

Introduction
The process of booting UOS involves three steps of loading and executing:

1. Primary bootstrap
2. Init (secondary bootstrap)
3. UOS

The primary bootstrap is the normal bootstrapping procedure appropriate to the hardware.

Created with the Personal Edition of HelpNDoc: Easily create EPub books

Passing the Configuration to UOS

Passing the Configuration to UOS
Configuration information is passed to UOS in a file on the boot device. If the boot device is read-only, the
information is written to a buffer. In either case, the configuration data contains a series of records with
configuration data. Each record consists of a one byte record type, followed by one or more parameters
appropriate to the type of record. The parameters consist of fixed and variable-length values. The fixed values
vary in size from 1 to 8 bytes (1, 2, 4, and 8 byte values). The size is encoded in the record type.

Mask (Record type and 3) Description

0 1 byte

1 2 bytes

2 4 bytes

http://www.helpauthoringsoftware.com
http://www.helpauthoringsoftware.com
http://www.helpndoc.com
http://www.helpndoc.com/feature-tour

UOS Internals Manual

35 / 35

3 8 bytes

Thus, record types 0-3 are the same record type, but with different sizes for fixed-size parameters. Here are
the record types supported:

Record type(s) Description Parameters

0-3 Disabled device type, controller, unit

4-7 RAM disk address, size

8-11 Boot device type, controller, unit

Note that any record types not shown are reserved for future use.

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

Kernel Startup

Kernel Startup
The kernel is responsible for preparing the UOS executive for use. Any errors encountered during this
process will cause the startup to fail. The following steps are performed by the Startup method of the Kernel
class instance:

1. Load file system component from the boot device
This is done by reading the boot block and extracting the file system position and length.

2. Load Memory Management component from boot device
3. Load Heap Management component from boot device
4. Set up Memory Management component
This is done by setting the MMC's kernel.

5. Set up Heap Management component
This is done by calling the HMC's End_Startup method.

6. Mount the boot device's file system
If the file system is dirty, it is rebuilt and then mounted.

7. Get path to installed UOS
This is done by getting the link from the \uos\installed.sys file.

8. Load Interrupt Manager component
9. Load File Processor component
10. Load System Services component
11. Dismount the file system and remount via the File Processor
12. Get startup configuration
If the store is read-only, the configuration is read from a buffer maintained by the HAL. Otherwise, it is read
from \uos\startup.dat.

13. Process startup configuration
14. Add any RAM disks from the startup configuration to the File Processor
15. Load User Security component
16. Define sys$system: to point to booted installation
17. Create startup process and attach it to the system console
18. Log the startup process in to user 1
19. Run sys$system:startup.ucl

Created with the Personal Edition of HelpNDoc: Write EPub books for the iPad

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/create-epub-ebooks

	Title page
	Preface
	Part I: Overview
	Introduction
	Preliminary Concepts
	Exceptions
	Stores
	Mirror Sets
	RAM Stores
	Partitions
	File Heaps
	Optional File Heap structures
	Store Strings
	Store Lists
	Store String Lists

	The HAL
	Devices
	Terminals

	Memory
	HAL Heap

	The Executive
	The Kernel
	The File Processor (FiP)
	The Heap Manager (HMC)
	The Interrupt Manager (IMC)
	The Memory Manager (MMC)
	The System Services Component (SSC)
	The User and Security Component (USC)
	Privileges
	SysUAF
	Quota Structures
	Access Structures
	Authentication Structures

	Part II: Terminal Services
	Terminal Characteristics
	Output Filters
	XON/XOFF Flow Control
	Fill counts
	Input Filters
	Echo Control
	Delimiters
	Binary Input
	Video Terminals

	Part III: The UOS File System
	Stores
	UOSFS Root Store Layout
	Allocation Clusters
	Native Files
	String Tables
	Standard Files

	Part IV: System Initialization
	Introduction
	Passing the Configuration to UOS
	Kernel Startup

